Вариант № 197

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
1
Задание № 331
i

Функ­ция y= дробь: чис­ли­тель: 1, зна­ме­на­тель: ко­си­нус x конец дроби не опре­де­ле­на в точке:



2
Задание № 92
i

Пусть O и O1  — цен­тры ос­но­ва­ний ци­лин­дра, изоб­ра­жен­но­го на ри­сун­ке. Тогда об­ра­зу­ю­щей ци­лин­дра яв­ля­ет­ся от­ре­зок:



3
Задание № 363
i

Если  целая часть: 4, дроб­ная часть: чис­ли­тель: 6, зна­ме­на­тель: 17 :x= целая часть: 4, дроб­ная часть: чис­ли­тель: 5, зна­ме­на­тель: 8 : целая часть: 3, дроб­ная часть: чис­ли­тель: 2, зна­ме­на­тель: 5   — вер­ная про­пор­ция, то число x равно:



4
Задание № 94
i

Най­ди­те зна­че­ние вы­ра­же­ния  левая круг­лая скоб­ка целая часть: 2, дроб­ная часть: чис­ли­тель: 7, зна­ме­на­тель: 12 минус целая часть: 2, дроб­ная часть: чис­ли­тель: 17, зна­ме­на­тель: 36 пра­вая круг­лая скоб­ка умно­жить на 2,7 минус 0,4.



5
Задание № 665
i

Вы­чис­ли­те  дробь: чис­ли­тель: 6,4 в квад­ра­те минус 3,3 в квад­ра­те плюс 9,7 умно­жить на 4,9, зна­ме­на­тель: 8 конец дроби .



6
Задание № 336
i

Ре­зуль­тат упро­ще­ния вы­ра­же­ния 3 в сте­пе­ни левая круг­лая скоб­ка 2x плюс 3 пра­вая круг­лая скоб­ка минус 3 в сте­пе­ни левая круг­лая скоб­ка 2x пра­вая круг­лая скоб­ка имеет вид:



7
Задание № 637
i

Об­ра­зу­ю­щая ко­ну­са равна 34 и на­кло­не­на к плос­ко­сти ос­но­ва­ния под углом 60°. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са.



8
Задание № 38
i

От листа жести, име­ю­ще­го форму квад­ра­та, от­ре­за­ли пря­мо­уголь­ную по­ло­су ши­ри­ной 7 дм, после чего пло­щадь остав­шей­ся части листа ока­за­лась рав­ной 30 дм2. Длина сто­ро­ны квад­рат­но­го листа (в де­ци­мет­рах) была равна:



9
Задание № 669
i

Вы­ра­зи­те n из ра­вен­ства  дробь: чис­ли­тель: 3 плюс m, зна­ме­на­тель: 2 конец дроби = дробь: чис­ли­тель: n минус m, зна­ме­на­тель: 8 конец дроби .



10
Задание № 640
i

Точки A(−1; 2) и B(2 ;7)  — вер­ши­ны квад­ра­та ABCD. Пе­ри­метр квад­ра­та равен:



11
Задание № 251
i

На кру­го­вой диа­грам­ме по­ка­за­но рас­пре­де­ле­ние по­сев­ных пло­ща­дей под зер­но­вые куль­ту­ры в аг­ро­хо­зяй­стве. Сколь­ко гек­та­ров от­ве­де­но под гре­чи­ху, если овсом за­се­я­но на 390 га боль­ше, чем рожью?



12
Задание № 522
i

На одной чаше урав­но­ве­шен­ных весов лежат 5 яблок и 2 груши, на дру­гой  — 3 яб­ло­ка, 4 груши и гирь­ка весом 60 г. Каков вес одной груши (в грам­мах), если все фрук­ты вме­сте весят 1570 г? Счи­тай­те все яб­ло­ки оди­на­ко­вы­ми по весу и все груши оди­на­ко­вы­ми по весу.



13
Задание № 373
i

Па­рал­лель­но сто­ро­не тре­уголь­ни­ка, рав­ной 10, про­ве­де­на пря­мая. Длина от­рез­ка этой пря­мой, за­клю­чен­но­го между сто­ро­на­ми тре­уголь­ни­ка, равна 6. Най­ди­те от­но­ше­ние пло­ща­ди по­лу­чен­ной тра­пе­ции к пло­ща­ди ис­ход­но­го тре­уголь­ни­ка.



14
Задание № 194
i

Из­вест­но, что наи­мень­шее зна­че­ние функ­ции, за­дан­ной фор­му­лой y  =  x2 + 8x + c, равно −3. Тогда зна­че­ние c равно:



15
Задание № 255
i

Точки A, B, C лежат на боль­шой окруж­но­сти сферы так, что тре­уголь­ник ABC  — рав­но­сто­рон­ний. Если AB  =  3 ко­рень из 6 , то пло­щадь сферы равна:



16

ABCDA1B1C1D1  — пря­мо­уголь­ный па­рал­ле­ле­пи­пед такой, что AB=12, AD=3. Через се­ре­ди­ны ребер AA1 и BB1 про­ве­де­на плос­кость (см.рис.), со­став­ля­ю­щая угол 60° с плос­ко­стью ос­но­ва­ния ABCD. Най­ди­те пло­щадь се­че­ния па­рал­ле­ле­пи­пе­да этой плос­ко­стью.



17
Задание № 587
i

Сумма наи­боль­ше­го и наи­мень­ше­го зна­че­ний функ­ции

y= левая круг­лая скоб­ка 2 синус 2x плюс 2 ко­си­нус 2x пра­вая круг­лая скоб­ка в квад­ра­те

равна:



18
Задание № 648
i

Ко­рень урав­не­ния

 ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 0,6 пра­вая круг­лая скоб­ка дробь: чис­ли­тель: 1 минус 7x, зна­ме­на­тель: 4x минус 5 конец дроби плюс ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 0,6 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка левая круг­лая скоб­ка 1 минус 7x пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 4x минус 5 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка =0

(или сумма кор­ней, если их не­сколь­ко) при­над­ле­жит про­ме­жут­ку:



19
Задание № 529
i

Если в пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­де вы­со­та равна 6, а пло­щадь диа­го­наль­но­го се­че­ния равна 12, то ее объем равен ...


Ответ:

20
Задание № 380
i

Диа­го­на­ли тра­пе­ции равны 15 и 36. Най­ди­те пло­щадь тра­пе­ции, если ее сред­няя линия равна 19,5.


Ответ:

21
Задание № 231
i

Най­ди­те мо­дуль раз­но­сти наи­боль­ше­го и наи­мень­ше­го кор­ней урав­не­ния  левая круг­лая скоб­ка 2x в квад­ра­те минус x минус 7 пра­вая круг­лая скоб­ка в квад­ра­те = левая круг­лая скоб­ка 5x плюс 1 пра­вая круг­лая скоб­ка в квад­ра­те .


Ответ:

22
Задание № 532
i

Най­ди­те пе­ри­метр пра­виль­но­го ше­сти­уголь­ни­ка, мень­шая диа­го­наль ко­то­ро­го равна 6 ко­рень из 3 .


Ответ:

23
Задание № 413
i

По двум пер­пен­ди­ку­ляр­ным пря­мым, ко­то­рые пе­ре­се­ка­ют­ся в точке O, дви­жут­ся две точки M1 и M2 по на­прав­ле­нию к точке O со ско­ро­стя­ми 1  дробь: чис­ли­тель: м, зна­ме­на­тель: с конец дроби и 2  дробь: чис­ли­тель: м, зна­ме­на­тель: с конец дроби со­от­вет­ствен­но. До­стиг­нув точки O, они про­дол­жа­ют свое дви­же­ние. В пер­во­на­чаль­ный мо­мент вре­ме­ни M1O = 3 м, M2O = 11 м. Через сколь­ко се­кунд рас­сто­я­ние между точ­ка­ми M1 и M2 будет ми­ни­маль­ным?


Ответ:

24
Задание № 204
i

Три числа со­став­ля­ют гео­мет­ри­че­скую про­грес­сию, в ко­то­рой q боль­ше 1. Если вто­рой член про­грес­сии умень­шить на 8, то по­лу­чен­ные три числа в том же по­ряд­ке опять со­ста­вят гео­мет­ри­че­скую про­грес­сию. Если тре­тий член новой про­грес­сии умень­шить на 25, то по­лу­чен­ные числа со­ста­вят ариф­ме­ти­че­скую про­грес­сию. Най­ди­те сумму ис­ход­ных чисел.


Ответ:

25
Задание № 565
i

Гео­мет­ри­че­ская про­грес­сия со зна­ме­на­те­лем 6 со­дер­жит 10 чле­нов. Сумма всех чле­ном про­грес­сии равна 42. Най­ди­те сумму всех чле­нов про­грес­сии с чет­ны­ми но­ме­ра­ми.


Ответ:

26
Задание № 56
i

Най­ди­те зна­че­ние вы­ра­же­ния:  дробь: чис­ли­тель: синус в квад­ра­те 184 гра­ду­сов, зна­ме­на­тель: 4 синус в квад­ра­те 23 гра­ду­сов умно­жить на синус в квад­ра­те 2 гра­ду­сов умно­жить на синус в квад­ра­те 44 гра­ду­сов умно­жить на синус в квад­ра­те 67 гра­ду­сов конец дроби .


Ответ:

27
Задание № 447
i

Най­ди­те сумму целых зна­че­ний x, при­над­ле­жа­щих об­ла­сти опре­де­ле­ния функ­ции

y= ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 15 плюс 2x минус x в квад­ра­те пра­вая круг­лая скоб­ка .


Ответ:

28
Задание № 388
i

В рав­но­бо­кой тра­пе­ции боль­шее ос­но­ва­ние вдвое боль­ше каж­дой из осталь­ных сто­рон и лежит в плос­ко­сти α. Бо­ко­вая сто­ро­на об­ра­зу­ет с плос­ко­стью α угол, синус ко­то­ро­го равен  дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 6 конец дроби . Най­ди­те 18sinβ, где β — угол между диа­го­на­лью тра­пе­ции и плос­ко­стью α.


Ответ:

29
Задание № 299
i

Ко­ли­че­ство целых ре­ше­ний не­ра­вен­ства 7 в сте­пе­ни левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка плюс ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 0,2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 23 минус x пра­вая круг­лая скоб­ка боль­ше 5 равно ...


Ответ:

30
Задание № 510
i

Най­ди­те про­из­ве­де­ние кор­ней урав­не­ния x минус ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус 121 конец ар­гу­мен­та = дробь: чис­ли­тель: левая круг­лая скоб­ка x минус 11 пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: 2x плюс 22 конец дроби .


Ответ:
Завершить работу, свериться с ответами, увидеть решения.